Learning to Rank Using Mixture Of Experts And Matching Loss Functions
نویسندگان
چکیده
منابع مشابه
Learning Mixtures of Discrete Product Distributions using Spectral Decompositions
We study the problem of learning a distribution from samples, when the underlying distribution is a mixture of product distributions over discrete domains. This problem is motivated by several practical applications such as crowdsourcing, recommendation systems, and learning Boolean functions. The existing solutions either heavily rely on the fact that the number of mixtures is finite or have s...
متن کاملReinforcement Learning by Probability Matching Philip
We present a new algorithm for associative reinforcement learning. The algorithm is based upon the idea of matching a network's output probability with a probability distribution derived from the environment's reward signal. This Probability Matching algorithm is shown to perform faster and be less susceptible to local minima than previously existing algorithms. We use Probability Matching to t...
متن کاملReinforcement Learning by Probability Matching
We present a new algorithm for associative reinforcement learning. The algorithm is based upon the idea of matching a network's output probability with a probability distribution derived from the environment's reward signal. This Probability Matching algorithm is shown to perform faster and be less susceptible to local minima than previously existing algorithms. We use Probability Matching to t...
متن کاملForecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملMatching Scores of System Relevance and User-Oriented Relevance in SID, ISC and Google Scholar
Background and Aim: The main aim of Information storage and retrieval systems is keeping and retrieving the related information means providing the related documents with users’ needs or requests. This study aimed to answer this question that how much are the system relevance and User- Oriented relevance are matched in SID, SCI and Google Scholar databases. Method: In this study 15 keywords of ...
متن کامل